APPROXIMATION ALGORITHMS AND HEURISTICS FOR A 2-DEPOT, HETEROGENOUS HAMILTONIAN PATH PROBLEM A Thesis by RIDDHI
نویسندگان
چکیده
Approximation Algorithms and Heuristics for a 2-Depot, Heterogenous Hamiltonian Path Problem. (August 2010) Riddhi Rajeev Doshi, B.E., North Gujarat University, Patan, India Chair of Advisory Committee: Dr. Sivakumar Rathinam Various civil and military applications of UAVs, or ground robots, require a set of vehicles to monitor a group of targets. Routing problems naturally arise in this setting where the operators of the vehicles have to plan the paths suitably in order to optimize the use of resources available such as sensors, fuel etc. These vehicles may differ either in their structural (design and dynamics) or functional (sensing) capabilities. This thesis addresses an important routing problem involving two heterogeneous vehicles. As the addressed routing problem is NP-Hard, we develop an approximation algorithm and heuristics to solve the problem. Our approach involves dividing the routing problem into two sub-problems: Partitioning and Sequencing. Partitioning the targets involves finding two distinct sets of targets, each corresponding to one of the vehicles. We then find a sequence in which these targets need to be visited in order to optimize the use of resources to the maximum possible extent. The sequencing problem can be solved either by Christofides algorithm or the Lin-Kernighan Heuristic (LKH). The problem of partitioning is tackled by solving a Linear Program (LP) obtained by relaxing some of the constraints of an Integer Programming (IP) model for the problem. We observe the performance of two LP models for the partitioning. The first LP model is obtained by relaxing only the integrality constraints whereas in the second model relaxes both integrality and degree constraints. The algorithms were implemented in a C++ environment with the help of Con-
منابع مشابه
Using Neural Networks and Genetic Algorithms as Heuristics for NP-Complete Problems
USING NEURAL NETWORKS AND GENETIC ALGORITHMS AS HEURISTICS FOR NP-COMPLETE PROBLEMS William M. Spears, M.S. George Mason University, 1989 Thesis Director: Dr. Kenneth A. De Jong Paradigms for using neural networks (NNs) and genetic algorithms (GAs) to heuristically solve boolean satisfiability (SAT) problems are presented. Results are presented for two-peak and false-peak SAT problems. Since SA...
متن کاملHeuristic algorithms for the capacitated location-routing problem and the multi-depot vehicle routing problem
The Capacitated Location-Routing Problem (CLRP) is a NP-hard problem since it generalizes two well known NP-hard problems: the Capacitated Facility Location Problem (CFLP) and the Capacitated Vehicle Routing Problem (CVRP). The Multi-Depot Vehicle Routing Problem (MDVRP) is known to be a NP-hard since it is a generalization of the well known Vehicle Routing Problem (VRP), arising with one depot...
متن کاملAddressing a fixed charge transportation problem with multi-route and different capacities by novel hybrid meta-heuristics
In most real world application and problems, a homogeneous product is carried from an origin to a destination by using different transportation modes (e.g., road, air, rail and water). This paper investigates a fixed charge transportation problem (FCTP), in which there are different routes with different capacities between suppliers and customers. To solve such a NP-hard problem, four meta-heur...
متن کاملA Comparison of Four Multi-Objective Meta-Heuristics for a Capacitated Location-Routing Problem
In this paper, we study an integrated logistic system where the optimal location of depots and vehicles routing are considered simultaneously. This paper presents a new mathematical model for a multi-objective capacitated location-routing problem with a new set of objectives consisting of the summation of economic costs, summation of social risks and demand satisfaction score. A new multi-objec...
متن کاملThree Metaheuristic Algorithms for Solving the Multi-item Capacitated Lot-sizing Problem with Product Returns and Remanufacturing
This paper proposes a new mixed integer programming model for multi-item capacitated lot-sizing problem with setup times, safety stock and demand shortages in closed-loop supply chains. The returned products from customers can either be disposed or be remanufactured to be sold as new ones again. Due to the complexity of problem, three meta-heuristics algorithms named simulated annealing (SA) al...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010